Three-dimensional chemical imaging of skin using stimulated Raman scattering microscopy.

نویسندگان

  • Dane M Drutis
  • Thomas M Hancewicz
  • Eugene Pashkovski
  • Lin Feng
  • Dawn Mihalov
  • Gary Holtom
  • Kavssery P Ananthapadmanabhan
  • X Sunney Xie
  • Manoj Misra
چکیده

Stimulated Raman scattering (SRS) microscopy is used to generate structural and chemical three-dimensional images of native skin. We employed SRS microscopy to investigate the microanatomical features of skin and penetration of topically applied materials. Image depth stacks are collected at distinct wavelengths corresponding to vibrational modes of proteins, lipids, and water in the skin. We observed that corneocytes in stratum corneum are grouped together in clusters, 100 to 250 μm in diameter, separated by 10- to 25-μm-wide microanatomical skin-folds called canyons. These canyons occasionally extend down to depths comparable to that of the dermal-epidermal junction below the flat surface regions in porcine and human skin. SRS imaging shows the distribution of chemical species within cell clusters and canyons. Water is predominately located within the cell clusters, and its concentration rapidly increases at the transition from stratum corneum to viable epidermis. Canyons do not contain detectable levels of water and are rich in lipid material. Oleic acid-d34 applied to the skin surface lines the canyons down to a depth of 50 μm below the surface of the skin. This observation could have implications on the evaluation of penetration profiles of bioactive materials measured using traditional methods, such as tape-stripping.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imaging drug delivery to skin with stimulated Raman scattering microscopy.

Efficient drug delivery to the skin is essential for the treatment of major dermatologic diseases, such as eczema, psoriasis and acne. However, many compounds penetrate the skin barrier poorly and require optimized formulations to ensure their bioavailability. Here, stimulated Raman scattering (SRS) microscopy, a recently developed, label-free chemical imaging tool, is used to acquire high reso...

متن کامل

Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy.

Label-free chemical contrast is highly desirable in biomedical imaging. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. Here we report a three-dimensional multiphoton vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS imaging is significantly greater than that of spon...

متن کامل

Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy.

Stimulated Raman scattering (SRS) microscopy is a newly developed label-free chemical imaging technique that overcomes the speed limitation of confocal Raman microscopy while avoiding the nonresonant background problem of coherent anti-Stokes Raman scattering (CARS) microscopy. Previous demonstrations have been limited to single Raman band measurements. We present a novel modulation multiplexin...

متن کامل

Imaging chemistry inside living cells by stimulated Raman scattering microscopy.

Stimulated Raman scattering (SRS) microscopy is a vibrational imaging platform developed to visualize chemical content of a biological sample based on molecular vibrational fingerprints. With high-speed, high-sensitivity, and three-dimensional sectioning capability, SRS microscopy has been used to study chemical distribution, molecular transport, and metabolic conversion in living cells in a la...

متن کامل

Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy.

Label-free microscopy with chemical contrast and high acquisition speed up to video-rate has recently been made possible by stimulated Raman scattering (SRS) microscopy. While SRS imaging offers superb sensitivity, the spectral specificity of the original narrowband implementation is limited, making distinguishing chemical species with overlapping Raman bands difficult. Here we present a highly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 19 11  شماره 

صفحات  -

تاریخ انتشار 2014